These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Role of TRPC6 in pulmonary artery smooth muscle cells proliferation and apoptosis under hypoxia and hypercapnia]. Author: Jia XG, Zheng MX, Zhang JJ, Zhang CC, Zhao MP, Wu YM, Chen XW, Wang WT. Journal: Sheng Li Xue Bao; 2017 Feb 25; 69(1):47-54. PubMed ID: 28217807. Abstract: The present study was to investigate the role of TRPC6 in pulmonary artery smooth muscle cells (PASMCs) proliferation and apoptosis under hypoxia and hypercapnia. PASMCs were isolated from chloral hydrate-anesthetized male Sprague-Dawley (SD) rats. Cellular purity was assessed by immunofluorescence staining for smooth muscle α-actin under fluorescence microscopy. Passage 4-6 PASMCs were starved for 24 h in serum-free DMEM and divided into 5 groups randomly: normoxia, hypoxia and hypercapnia, DMSO, TRPC6 inhibitor SKF-96365 and TRPC6 activator OAG groups. The normoxic group was incubated under normoxia (5% CO2, 21% O2, 37 °C) for 24 h, and the others were incubated with corresponding drugs under hypoxic and hypercapnic (6% CO2, 5% O2, 37 °C) atmosphere for 24 h. TRPC6 mRNA was detected by reverse transcription-PCR. TRPC6 protein was detected by Western blotting. The proliferation of PASMCs was performed by CCK-8 kit. Apoptosis of the PASMCs was detected using TUNEL assay. The [Ca2+]i in the PASMCs was measured using Fura 2-AM fluorescence. The results showed that the expressions of TRPC6 mRNA and protein, and [Ca2+]i were upregulated under hypoxic and hypercapnic conditions. Hypoxia and hypercapnia promoted cellular proliferation and inhibited apoptosis in the PASMCs. OAG enhanced the above-mentioned effects of hypoxia and hypercapnia, whereas SKF-96365 reversed these effects. These results suggest that TRPC6 may play a role in PASMCs proliferation and apoptosis under hypoxia and hypercapnia by regulating [Ca2+]i.[Abstract] [Full Text] [Related] [New Search]