These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The Evolutionary Economics of Embryonic-Sac Fluids in Squamate Reptiles. Author: Bonnet X, Naulleau G, Shine R. Journal: Am Nat; 2017 Mar; 189(3):333-344. PubMed ID: 28221829. Abstract: The parchment-shelled eggs of squamate reptiles take up substantial water from the nest environment, enabling the conversion of yolk into neonatal tissue and buffering the embryo against the possibility of subsequent dry weather. During development, increasing amounts of water are stored in the embryonic sacs (i.e., membranes around the embryo: amnion, allantois, and chorion). The evolution of viviparity (prolonged uterine retention of developing embryos) means that embryonic-sac fluid storage now imposes a cost (increased maternal burdening), confers less benefit (because the mother buffers fetal water balance), and introduces a potential conflict among uterine siblings (for access to finite water supplies). Our data on nine species of squamate reptiles and published information on three species show that the embryonic-sac fluids comprise around 33% of neonatal mass in viviparous species versus 94% in full-term eggs of oviparous squamates. Data on parturition in 149 vipers (Vipera aspis, a viviparous species) show that larger offspring store more fluids in their fetal sacs and that an increase in litter size is associated with a decrease in fluid-sac mass per offspring. Overall, the evolutionary transition from oviparity to viviparity may have substantially altered selective forces on offspring packaging and created competition among offspring for access to water reserves during embryonic development.[Abstract] [Full Text] [Related] [New Search]