These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: High chromosomal sensitivity of Chinese hamster xrs 5 cells to restriction endonuclease induced DNA double-strand breaks.
    Author: Bryant PE, Birch DA, Jeggo PA.
    Journal: Int J Radiat Biol Relat Stud Phys Chem Med; 1987 Oct; 52(4):537-54. PubMed ID: 2822587.
    Abstract:
    The cytogenetic effects of restriction endonucleases (RE) and X-rays were examined in the radiosensitive mutant Chinese hamster cell line xrs 5 and its normal parental line CHO K1. Cells were permeabilized with Sendai virus and exposed to Pvu II and Eco RV which induce blunt-ended double-strand breaks (dsb) in the DNA of cells, or Bam H1 and Eco R1 which induce cohesive-ended dsb with a four-base overlap. Treated cells were then assayed for the presence of metaphase chromosomal aberrations by sampling at multiple fixation times and in experiments where cells were exposed to graded series of RE concentrations. Exposure to X-rays or RE causing blunt-ended dsb was found to be between two and three times more effective in xrs 5 than in CHO K1 cells. We interpret this higher chromosomal sensitivity of xrs 5 cells as reflecting the reported defect in dsb repair in xrs 5. Both xrs 5 and CHO K1 cells yielded less aberrations after exposure to Bam H1 or Eco R1 than after exposure to Pvu II or Eco RV, confirming our previous results and demonstrating that cohesive-ended dsb are less damaging than blunt-ended dsb. Multiple fixation time experiments showed that the higher sensitivity of xrs 5 was evident at several different sampling times after treatment. Similarly the low yield of aberrations after exposure of cells to Bam H1 was evident at all sampling times. Overdispersion of chromosomal aberrations was observed in samples exposed to RE. This is thought to be due to a non-uniform permeabilization of the cell population to RE. Our results indicate that RE-induced dsb are handled by cells in a similar way to those arising during X-ray exposure.
    [Abstract] [Full Text] [Related] [New Search]