These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Morphology, thermal and mechanical properties of poly (ε-caprolactone) biocomposites reinforced with nano-hydroxyapatite decorated graphene.
    Author: Zhou K, Gao R, Jiang S.
    Journal: J Colloid Interface Sci; 2017 Jun 15; 496():334-342. PubMed ID: 28237751.
    Abstract:
    In this work, hydroxyapatite (HAP) nanorods decorated on graphene nanosheets (HAP-Gs) was synthesized by a hydrothermal method. The structure, elemental composition and morphology of the HAP-Gs hybrids were characterized by X-ray diffraction, Fourier transform infrared and Transmission electron microscopy. Subsequently, the hybrids were incorporated into poly (ε-caprolactone) (PCL) via a solution blending method. Optical images and scanning electron microscopy observation revealed not only a well dispersion of HAP-Gs hybrids but also a strong interfacial interaction between hybrids and PCL matrix. The influence of HAP-Gs hybrids on the crystallization behavior, crystal structure, thermal stability, mechanical properties and biocompatibility of the PCL nanocomposites was investigated in detail. The results showed that the crystallization temperature of PCL was enhanced obviously, but the crystal structure was not affected by the incorporation of HAP-Gs hybrids. The mechanical properties of PCL bionanocomposites were improved obviously.
    [Abstract] [Full Text] [Related] [New Search]