These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Persistence of Escherichia coli O157:H7 during pilot-scale processing of iceberg lettuce using flume water containing peroxyacetic acid-based sanitizers and various organic loads.
    Author: Davidson GR, Kaminski-Davidson CN, Ryser ET.
    Journal: Int J Food Microbiol; 2017 May 02; 248():22-31. PubMed ID: 28237883.
    Abstract:
    In order to minimize cross-contamination during leafy green processing, chemical sanitizers are routinely added to the wash water. This study assessed the efficacy of peroxyacetic acid and mixed peracid against E. coli O157:H7 on iceberg lettuce, in wash water, and on equipment during simulated commercial production in a pilot-scale processing line using flume water containing various organic loads. Iceberg lettuce (5.4kg) inoculated to contain 106CFU/g of a 4-strain cocktail of non-toxigenic, GFP-labeled, ampicillin-resistant E. coli O157:H7, was shredded using a commercial shredder, step-conveyed to a flume tank, washed for 90s using water alone or two different sanitizing treatments (50ppm peroxyacetic acid or mixed peracid) in water containing organic loads of 0, 2.5, 5 or 10% (w/v) blended iceberg lettuce, and then dried using a shaker table and centrifugal dryer. Thereafter, three 5.4-kg batches of uninoculated iceberg lettuce were identically processed. Various product (25g) and water (50ml) samples collected during processing along with equipment surface samples (100cm2) from the flume tank, shaker table and centrifugal dryer were then assessed for numbers of E. coli O157:H7. Organic load rarely impacted (P>0.05) the efficacy of either peroxyacetic acid or mixed peracid, with typical reductions of >5logCFU/ml in wash water throughout processing for all organic loads. Increases in organic load in the wash water corresponded to changes in total solids, chemical oxygen demand, turbidity, maximum filterable volume, and oxidation/reduction potential. After 90s of exposure to flume water, E. coli O157:H7 reductions on inoculated lettuce ranged from 0.97 to 1.74logCFU/g using peroxyacetic acid, with an average reduction of 1.35logCFU/g for mixed peracid. E. coli O157:H7 persisted on all previously uninoculated lettuce following the inoculated batch, emphasizing the need for improved intervention strategies that can better ensure end-product safety.
    [Abstract] [Full Text] [Related] [New Search]