These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Primary human monocytes differentiate into M2 macrophages and involve Notch-1 pathway. Author: Singla DK, Wang J, Singla R. Journal: Can J Physiol Pharmacol; 2017 Mar; 95(3):288-294. PubMed ID: 28238274. Abstract: The current study investigates whether inhibiting the Notch-1 signaling pathway in primary human monocytes enhances M2 macrophage differentiation. We generated a primary human monocyte cell culture model to understand the effect of the Notch-1 signaling pathway. Monocytes were treated with Notch-1 inhibitors DAPT or siRNA. Our data show that there was a significant increase in the M1 macrophage population demonstrated by iNOS marker in the primary human monocytes treated with apoptotic-conditioned medium (ACM). Next, the levels of pro-inflammatory cytokines IL-6 and MCP-1, as well as TNF-α, increased in ACM media (p < 0.05). Furthermore, M1 macrophages and pro-inflammatory cytokines were reduced following DAPT or siRNA treatment. Comparatively, there was a significant increase in M2 macrophages, as demonstrated by an increase in CD206 and arginase-1 positive cells treated with DAPT or siRNA (p < 0.05). Furthermore, a significant increase in the associated anti-inflammatory cytokines IL-10 and IL-1RA was also observed with respect to control groups (p < 0.05). We conclude that blocking the Notch-1 pathway with DAPT or siRNA attenuates pro-inflammatory cytokines, enhances M2 macrophage differentiation, and increases anti-inflammatory cytokines in primary human monocytes. As a result, Notch-1 pathway inhibition has potential therapeutic applications of inflammatory disease.[Abstract] [Full Text] [Related] [New Search]