These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The Effect of Simulated Flash-Heat Pasteurization on Immune Components of Human Milk. Author: Daniels B, Schmidt S, King T, Israel-Ballard K, Amundson Mansen K, Coutsoudis A. Journal: Nutrients; 2017 Feb 22; 9(2):. PubMed ID: 28241418. Abstract: A pasteurization temperature monitoring system has been designed using FoneAstra, a cellphone-based networked sensing system, to monitor simulated flash-heat (FH) pasteurization. This study compared the effect of the FoneAstra FH (F-FH) method with the Sterifeed Holder method currently used by human milk banks on human milk immune components (immunoglobulin A (IgA), lactoferrin activity, lysozyme activity, interleukin (IL)-8 and IL-10). Donor milk samples (N = 50) were obtained from a human milk bank, and pasteurized. Concentrations of IgA, IL-8, IL-10, lysozyme activity and lactoferrin activity were compared to their controls using the Student's t-test. Both methods demonstrated no destruction of interleukins. While the Holder method retained all lysozyme activity, the F-FH method only retained 78.4% activity (p < 0.0001), and both methods showed a decrease in lactoferrin activity (71.1% Holder vs. 38.6% F-FH; p < 0.0001) and a decrease in the retention of total IgA (78.9% Holder vs. 25.2% F-FH; p < 0.0001). Despite increased destruction of immune components compared to Holder pasteurization, the benefits of F-FH in terms of its low cost, feasibility, safety and retention of immune components make it a valuable resource in low-income countries for pasteurizing human milk, potentially saving infants' lives.[Abstract] [Full Text] [Related] [New Search]