These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Molecular identification of the Dyn/Kor system and its potential role in the reproductive axis of goldfish.
    Author: Liu Y, Li S, Wang Q, Chen Y, Qi X, Liu Y, Liu X, Lin H, Zhang Y.
    Journal: Gen Comp Endocrinol; 2018 Feb 01; 257():29-37. PubMed ID: 28242307.
    Abstract:
    To ascertain the significance of the dynorphin/kappa-opioid receptor (Dyn/Kor) system in fish reproduction, prodynorphin (pdyn) cDNA was cloned from goldfish. Two Dyn peptides (DynA and DynB) are present in the goldfish prodynorphin precursor. Both DynA and DynB are biologically active as they are able to functionally interact with the goldfish Kor expressed in cultured eukaryotic cells to suppress forskolin-induced CRE promoter activity. RT-PCR analysis showed that pdyn is widely expressed in brain regions, with the highest expression in hypothalamus. During ovarian development, hypothalamic pdyn and kor mRNA levels are lower in the early vitellogenic stage. Then the biological effects of Dyn peptides on salmon gonadotropin releasing hormone (sgnrh), luteinizing hormone beta (lhb) and follicle stimulating hormone beta (fshb) mRNA synthesis were further investigated in goldfish. Intraperitoneal injections of DynA and DynB significantly reduced hypothalamic sgnrh and pituitary lhb and fshb mRNA levels in male goldfish, but these two peptides only down-regulated sgnrh and lhb mRNA expression in female goldfish. In vitro studies revealed that DynA also decreased lhb mRNA levels in primary cultures of pituitary cells, indicating that this peptide can exert its actions at the pituitary level. Our findings suggest that the Dyn/Kor system plays a negative role in regulating the reproductive axis in goldfish.
    [Abstract] [Full Text] [Related] [New Search]