These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Photocatalytic removal of tetrabromobisphenol A by magnetically separable flower-like BiOBr/BiOI/Fe3O4 hybrid nanocomposites under visible-light irradiation.
    Author: Gao S, Guo C, Hou S, Wan L, Wang Q, Lv J, Zhang Y, Gao J, Meng W, Xu J.
    Journal: J Hazard Mater; 2017 Jun 05; 331():1-12. PubMed ID: 28242523.
    Abstract:
    A novel flower-like three-dimensional BiOBr/BiOI/Fe3O4 heterojunction photocatalyst was synthesized using a simple in situ co-precipitation method at room temperature. The hybrid composites were characterized by a couple of techniques including X-ray powder diffraction, scanning electron microscope, transmission electron microscopy, ultraviolet-visible diffuse reflection spectroscopy, Brunauer-Emmett-Teller, X-ray photo-electron spectroscopy, photoluminescence technique, and vibrating sample magnetometer. Fe3O4 nanoparticles were perfectly loaded on the surface of BiOBr/BiOI microspheres. The recyclable magnetic BiOBr/BiOI/Fe3O4 was employed to degrade TBBPA under visible light irradiation. The optimal removal efficiency of the ternary BiOBr/BiOI/Fe3O4 (2:2:0.5) nanocomposite reached up to 98.5% for TBBPA in aqueous solution. The superior photocatalytic activity of BiOBr/BiOI/Fe3O4 was mainly ascribed to large surface area and appropriate energy gaps, resulting in the effective adsorption and separation of electrons-hole pairs. The photogenerated reactive species determined by free radicals trapping experiments revealed that the excellent catalytic activity was primarily driven by O2- radical. The photocatalytic degradation kinetics and a detailed mechanism were also proposed. Result demonstrated that the BiOBr/BiOI/Fe3O4 can be magnetically recycled, and maintain high photocatalytic activity after reuse over five cycles. It suggested that the synthesized material had a potentially promising application for TBBPA removal by photocatalytic degradation from wastewater.
    [Abstract] [Full Text] [Related] [New Search]