These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Defects in oxidative phosphorylation. Biochemical investigations in skeletal muscle and expression of the lesion in other cells.
    Author: Scholte HR, Busch HF, Luyt-Houwen IE, Vaandrager-Verduin MH, Przyrembel H, Arts WF.
    Journal: J Inherit Metab Dis; 1987; 10 Suppl 1():81-97. PubMed ID: 2824921.
    Abstract:
    Mitochondria are very vulnerable to genetic and environmental damage. If a patient is suspected of having a mitochondrial disease, elevated blood lactate, lowered blood free carnitine, abnormal urinary organic acids and carnitine esters and tissue histopathology may help with the diagnosis. For biochemical assessment of the defect, muscle is the tissue of choice even when involvement of other organs like heart or brain is more prominent. We have studied isolated muscle mitochondria and homogenates from muscle biopsies in 250 patients, and have detected in more than one third mitochondrial defects in oxidative phosphorylation, dehydrogenases, non-redox enzymes catalyzing synthesis of fuel molecules and in the carnitine system. Several patients showed more than one defect. We have selected eight patients to illustrate how a relatively simple series of investigations in both isolated mitochondria and homogenate can be used for the identification of defects in oxidative phosphorylation in a small amount of muscle (200 mg or more). Identification of the defect(s) is important since it may provide the basis for rational treatment. A minority of the patients recovered partly or completely, which is unique in treatment of inborn errors of subcellular organelles. An important aspect of mitochondrial dysfunction is the tissue specificity. The defect may be systemic but is often clinically expressed in only one or a few tissues. Rarely, tissue-specific defects can be understood on the basis of tissue-specificity of mitochondrial (iso-)enzymes. Mitochondrial deficiencies of all biotin enzymes and most CoA-linked enzymes are expressed in fibroblasts; most respiratory chain defects are not. When mitochondrial ATP synthesis has been compromised by a mitochondrial defect, secondary lesions may be generated by changes in mitochondrial protein synthesis, activated proteases and phospholipases, increased matrix CoA and resulting carnitine deficiency, decrease in Krebs cycle intermediates and increased free radical formation and lipid peroxidation.
    [Abstract] [Full Text] [Related] [New Search]