These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Distinct Frontoparietal Networks Underlying Attentional Effort and Cognitive Control.
    Author: Berry AS, Sarter M, Lustig C.
    Journal: J Cogn Neurosci; 2017 Jul; 29(7):1212-1225. PubMed ID: 28253080.
    Abstract:
    We investigated the brain activity patterns associated with stabilizing performance during challenges to attention. Our findings revealed distinct patterns of frontoparietal activity and functional connectivity associated with increased attentional effort versus preserved performance during challenged attention. Participants performed a visual signal detection task with and without presentation of a perceptual-attention challenge (changing background). The challenge condition increased activation in frontoparietal regions including right mid-dorsal/dorsolateral PFC (RPFC), approximating Brodmann's area 9, and superior parietal cortex. We found that greater behavioral impact of the challenge condition was correlated with greater RPFC activation, suggesting that increased engagement of cognitive control regions is not always sufficient to maintain high levels of performance. Functional connectivity between RPFC and ACC increased during the challenge condition and was also associated with performance declines, suggesting that the level of synchronized engagement of these regions reflects individual differences in attentional effort. Pretask, resting-state RPFC-ACC connectivity did not predict subsequent performance, suggesting that RPFC-ACC connectivity increased dynamically during task performance in response to performance decrement and error feedback. In contrast, functional connectivity between RPFC and superior parietal cortex not only during the task but also during pretask rest was associated with preserved performance in the challenge condition. Together, these data suggest that resting frontoparietal connectivity predicts performance on attention tasks that rely on those same cognitive control networks and that, under challenging conditions, other control regions dynamically couple with this network to initiate the engagement of cognitive control.
    [Abstract] [Full Text] [Related] [New Search]