These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Evaluation of candida albicans biofilm formation on various dental restorative material surfaces. Author: Beldüz N, Kamburoğlu A, Yılmaz Y, Tosun I, Beldüz M, Kara C. Journal: Niger J Clin Pract; 2017 Mar; 20(3):355-360. PubMed ID: 28256492. Abstract: AIMS: Candida adhesion to any oral substrata is the first and essential stage in forming a pathogenic fungal biofilm. In general, yeast cells have remarkable potential to adhere to host surfaces, such as teeth or mucosa, and to artificial, nonbiological surfaces, such as restorative dental materials. This study compared the susceptibility of six dental restorative materials to Candida albicans adhesion. MATERIALS AND METHODS: Cylindrical samples of each material were made according to the manufacturersa instructions. The antifungal effect of the samples on C. albicans was determined with the disc-diffusion method. The samples were put in plates with sterile Mueller Hinton and Sabouraud dextrose agar previously seeded with C. albicans. After the incubation period, the inhibition zone around each sample was evaluated. To evaluate the biofilm formation, the XTT technique and scanning electron microscopy (SEM) were used. RESULTS: No inhibition zone was observed around the samples. According to the XTT assays, the amalgam samples revealed the lowest quantity of biofilm formation (P > 0.001). The highest median XTT values, significantly higher than the other materials (P < 0.001), were found for the composite and the compomer samples. Within the SEM examination, the amount of candidal growth was significantly lower on the resin-modified glass ionomer and glass-ionomer cement samples. The compomer and the composite samples showed more candidal adhesion. CONCLUSION: This finding emphasizes the use of glass ionomer restorative cements and amalgam to reduce C. albicans adhesion to dental restorative materials especially in people with weakened immune systems, neutropenia, and cancer.[Abstract] [Full Text] [Related] [New Search]