These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Achyranthes aspera Attenuates epilepsy in experimental animals: possible involvement of GABAergic mechanism. Author: Viswanatha GL, Venkataranganna MV, Prasad NBL, Godavarthi A. Journal: Metab Brain Dis; 2017 Jun; 32(3):867-879. PubMed ID: 28265839. Abstract: The present study was aimed to examine the possible anticonvulsant property of aerial parts of Achyranthes aspera using various experimental models of epilepsy in mice. Petroleum ether extract of aerial parts of A. aspera (PeAA), methanolic eAA (MeAA) and aqueous eAA (AeAA) was initially evaluated against six-hertz seizure model in mice, based on the outcomes the effective extract was further evaluated against maximal electroshock (MES) and pentylenetetrazole (PTZ) models in mice. In addition, the potent extract was evaluated against the PTZ model by co-administering with flumazenil (FMZ), and also evaluated for its effect on GABA levels in brain and NMDA-induced lethality in mice. Furthermore, the probable locomotor deficit-inducing property of the extract was evaluated by actophotometer test in mice. In results, only MeAA showed protection against six-hertz-induced seizures in mice, based on these outcomes only MeAA was evaluated in MES and PTZ models. Notably, the MeAA (200, 400 and 800 mg/kg) has offered mild and dose dependent protection against MES and PTZ-induced seizures in mice. Alongside, the MeAA (400 mg/kg) showed a significant increase in GABA levels in the brain compared to control, and in line with these findings the anti-PTZ effect of MeAA (400 mg/kg, p.o.) was blocked when co-administered with flumazenil (5 mg/kg, i.p.). However, the MeAA has not shown significant protection against NMDA-induced mortality and also did not cause significant change in locomotor activity compared to before treatment. These findings suggest that MeAA possess mild anticonvulsant activity and the outcomes further confirmed the involvement of GABAergic mechanism behind the anticonvulsant activity of MeAA.[Abstract] [Full Text] [Related] [New Search]