These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Molecular requirements involving the human platelet protease-activated receptor-4 mechanism of activation by peptide analogues of its tethered-ligand. Author: Moschonas IC, Kellici TF, Mavromoustakos T, Stathopoulos P, Tsikaris V, Magafa V, Tzakos AG, Tselepis AD. Journal: Platelets; 2017 Dec; 28(8):812-821. PubMed ID: 28267389. Abstract: Thrombin is the most potent agonist of human platelets and its effects are primarily mediated through the protease-activated receptors (PARs)-1 and -4. Although PAR-1 has higher affinity for thrombin than PAR-4, both receptors contribute to thrombin-mediated actions on platelets. Recently, a potent and selective PAR-1 antagonist (vorapaxar) was approved for clinical use in selected patients. In contrast, despite the fact that several PAR-4 antagonists have been developed, few of them have been tested in clinical trials. The aim of the present study was to elucidate the molecular requirements involving the PAR-4 mechanism of activation by peptide analogues of its tethered-ligand. Eight synthetic PAR-4 tethered-ligand peptide analogues were synthesized and studied for their agonistic/antagonistic potency and selectivity toward human washed platelet aggregation, using light transmittance aggregometry. In addition, in silico studies were conducted to describe the receptor-peptide interactions that are developed following PAR-4 exposure to the above analogues. To provide a first structure-activity relationship rationale on the bioactivity profiles recorded for the studied analogues, molecular docking was applied in a homology model of PAR-4, derived using the crystal structure of PAR-1. The following peptide analogues were synthesized: AYPGKF-NH2 (1), GYPGKF-NH2 (2), Ac-AYPGKF-NH2 (3), trans-cinnamoyl-AYPGKF-NH2 (4), YPGKF-NH2 (5), Ac-YPGKF-NH2 (6), trans-cinnamoyl-YPGKF-NH2 (7), and caffeoyl-YPGKF-NH2 (8). Peptide (1) is a selective PAR-4 agonist inducing platelet aggregation with an IC50 value of 26.2 μM. Substitution of Ala-1 with Gly-1 resulted in peptide (2), which significantly reduces the agonistic potency of peptide (1) by 25-fold. Importantly, substitution of Ala-1 with trans-cinnamoyl-1 resulted in peptide (7), which completely abolishes the agonistic activity of peptide (1) and renders it with a potent antagonistic activity toward peptide (1)-induced platelet aggregation. All other peptides tested were inactive. Tyr-2, residue, along with its neighboring environment was a key determinant in the PAR-4 recognition mode. When the neighboring residues to Tyr-2 provided an optimum spatial ability for the ligand to enter into the binding site of the transmembrane receptor, a biological response was propagated. These results were compared with the predicted binding poses of small molecule antagonists of PAR-4, denoted as YD-3, ML-354, and BMS-986120. π-π stacking interaction with Tyr-183 appears to be critical and common for both small molecules antagonists and the peptide trans-cinnamoyl-YPGKF-NH2. Conclusively, the lipophilicity, size, and aromatic nature of the residue preceding Tyr-2 are determining factors on whether a human platelet PAR-4 tethered-ligand peptide analogue will exert an agonistic or antagonistic activity.[Abstract] [Full Text] [Related] [New Search]