These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Rapid detection of carbapenemase-producing Klebsiella pneumoniae strains derived from blood cultures by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS). Author: Sakarikou C, Ciotti M, Dolfa C, Angeletti S, Favalli C. Journal: BMC Microbiol; 2017 Mar 08; 17(1):54. PubMed ID: 28274205. Abstract: BACKGROUND: Carbapenemase-producing Enterobacteriaceae (CPE), particularly carbapenemase-producing Klebsiella pneumoniae isolates, are important causative agents of nosocomial infections associated with significant mortality rates mostly in critical wards. The rapid detection and typing of these strains is critical either for surveillance purposes and to prevent outbreaks and optimize antibiotic therapy. In this study, the MALDI-TOF MS method was used to detect rapidly these isolates from blood cultures (BCs) and to obtain proteomic profiles enable to discriminate between carbapenemase-producing and non-carbapenemase-producing strains. RESULTS: Fifty-five K. pneumoniae strains were tested. Identification and carbapenemase-production detection assay using Ertapenem were performed both from bacterial pellets extracted directly from BCs flasks and from subcultures of these strains. For all isolates, a complete antimicrobial susceptibility testing and a genotypic characterization were performed. We found 100% agreement between the carbapenemase-producing profile generated by MALDI TOF MS and that obtained using conventional methods. The assay detected and discriminated different carbapenemase-producing K. pneumoniae isolates within 30 min to 3 h after incubation with Ertapenem. CONCLUSIONS: MALDI-TOF MS is a promising, rapid and economical method for the detection of carbapenemase-producing K. pneumoniae strains that could be successfully introduced into the routine diagnostic workflow of clinical microbiology laboratories.[Abstract] [Full Text] [Related] [New Search]