These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Exploring the interactions of irbesartan and irbesartan-2-hydroxypropyl-β-cyclodextrin complex with model membranes. Author: Liossi ΑS, Ntountaniotis D, Kellici TF, Chatziathanasiadou MV, Megariotis G, Mania M, Becker-Baldus J, Kriechbaum M, Krajnc A, Christodoulou E, Glaubitz C, Rappolt M, Amenitsch H, Mali G, Theodorou DN, Valsami G, Pitsikalis M, Iatrou H, Tzakos AG, Mavromoustakos T. Journal: Biochim Biophys Acta Biomembr; 2017 Jun; 1859(6):1089-1098. PubMed ID: 28274845. Abstract: The interactions of irbesartan (IRB) and irbesartan-2-hydroxypropyl-β-cyclodextrin (HP-β-CD) complex with dipalmitoyl phosphatidylcholine (DPPC) bilayers have been explored utilizing an array of biophysical techniques ranging from differential scanning calorimetry (DSC), small angle X-ray scattering (SAXS), ESI mass spectrometry (ESI-MS) and solid state nuclear magnetic resonance (ssNMR). Molecular dynamics (MD) calculations have been also conducted to complement the experimental results. Irbesartan was found to be embedded in the lipid membrane core and to affect the phase transition properties of the DPPC bilayers. SAXS studies revealed that irbesartan alone does not display perfect solvation since some coexisting irbesartan crystallites are present. In its complexed form IRB gets fully solvated in the membranes showing that encapsulation of IRB in HP-β-CD may have beneficial effects in the ADME properties of this drug. MD experiments revealed the topological and orientational integration of irbesartan into the phospholipid bilayer being placed at about 1nm from the membrane centre.[Abstract] [Full Text] [Related] [New Search]