These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Electron-nuclear coupling in nitrosyl heme proteins and in nitrosyl ferrous and oxy cobaltous tetraphenylporphyrin complexes. Author: Magliozzo RS, McCracken J, Peisach J. Journal: Biochemistry; 1987 Dec 01; 26(24):7923-31. PubMed ID: 2827762. Abstract: Electron spin echo envelope modulation (ESEEM) spectroscopy has been used to study electron-nuclear interactions in the following isoelectronic S = 1/2 complexes: NO-FeII(TPP) (TPP = tetraphenylporphyrin) with and without axial nitrogenous base, nitrosylhemoglobin in R and T states, and O2-CoII(TPP) with and without axial base. Only the porphyrin pyrrole nitrogens contribute to the ESEEM of the 6-coordinate nitrosyl FeII(TPP) complexes, nitrosylhemoglobin (R-state), and the nitrosyl complexes of alpha and beta chains. Pyrrole nitrogens in the 5-coordinate complex NO-FeII(TPP) are coupled too weakly to unpaired spin and therefore do not contribute to the ESEEM. A partially saturated T-state nitrosylhemoglobin does not exhibit echo envelope modulations characteristic of 6-coordinate nitrosyl species, which confirms that the proximal imidazole bond to heme iron is disrupted. Study of 6-coordinate O2-CoII(TPP)(L) complexes (L = nitrogenous base) using 14N- and 15N-labeled ligands and porphyrins enabled a detailed analysis of coupling parameters for both pyrrole and axial nitrogens. The pyrrole 14N coupling frequencies are similar to those in NO-FeII(TPP)(L). The Fermi contact couplings for axially bound nitrogen, calculated from simulation of ESEEM spectra for a series of O2-CoII(TPP)(L) complexes (L = pyridine, 4-picoline, 4-cyanopyridine, 4-carboxypyridine, and 1-, 2-, and 4-methylimidazole) illustrate a trend toward stronger hyperfine interactions with weaker bases.[Abstract] [Full Text] [Related] [New Search]