These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Peritoneal bacterial infection repressed the expression of IL17D in Siberia sturgeon a chondrostean fish in the early immune response. Author: Zhu H, Song R, Wang X, Hu H, Zhang Z. Journal: Fish Shellfish Immunol; 2017 May; 64():39-48. PubMed ID: 28279790. Abstract: IL17s are pro-inflammatory cytokines that play important roles in host fighting against extracellular bacteria and auto-immune and allergic diseases. IL17D is believed to be the most ancient IL17 member and its functions are far from clarity. Although it has been found in invertebrates, jawless fish, teleosts, and tetrapods, it has not been described in chondrostean fish. Moreover, there are discrepancies concerning its expression pattern in these animals. In this study, we cloned and characterized the cDNA of il17d in Siberia sturgeon (Acipenser baerii), a chondrostean fish and commercially important species in aquaculture. The sturgeon il17d cDNA encodes a deduced protein of 210aa. The classical characteristics of IL17, such as IL17 domain, cysteine and serine residues importantly for cystine-knot formation, and signal peptide, were observed in sturgeon IL17D. Phylogenetic analysis and multiple alignment suggest it is a counterpart of mammalian IL17D. However, in vivo studies demonstrated that the expression pattern of sturgeon il17d mRNA is different from that of other teleosts and jawless fish, and in most cases its expression was down-regulated at the early time points and gradually increasing at late time points when sturgeon were challenged with bacteria (Aernomas hydrophila or Staphylococcus aureus). The In vitro study by using primary spleen cells stimulated with polyI:C revealed a similar expression pattern to that in vivo studies, while the stimulation with β-glucan or LPS, which normally induced expression of il17d mRNA in target cells in vitro in other animals, did not show apparent changes in the expression of il17d mRNA. The results of present study indicated sturgeon IL17D may possess some different characteristics from its counterparts of other fish and invertebrates in the immune response, and may contribute to the understanding of IL17D functions in evolution as well as the potential use in sturgeon aquaculture.[Abstract] [Full Text] [Related] [New Search]