These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In situ biodegradable crosslinking of cationic oligomer coating on mesoporous silica nanoparticles for drug delivery. Author: Wang Y, Wang J, Yang Y, Sun Y, Yuan Y, Li Y, Liu C. Journal: Colloids Surf B Biointerfaces; 2017 May 01; 153():272-279. PubMed ID: 28279933. Abstract: Although layer-by-layer assembly using anionic and cationic polymer has been a popular way to develop core-shell nanoparticles, the strong electrostatic interactions may limit shell degradability, thus hampering their application as a platform for controlled therapeutic delivery. In this study, we demonstrate a simple approach to developing mesoporous nanohybrids via a process of pre-drug loading (using doxorubicin (DOX) as a model drug) into mesoporous silica nanoparticles (MSN), followed by surface functionalization with a kind of cationic oligomer (low molecular weight polyethylene imine, LPEI) and in situ crosslinking by degradable N,N'-bis(acryloyl)cystamine (BAC). The presence of LPEI shell affords the nanohybrids with charge-reversal ability, which means that the acidic tumor extracellular microenvironment can transform the negative surface charge at neutral conditions into positive-charged ones. The nanohybrids displayed a pH- and redox-dual sensitivity in DOX release under conditions that mimic intracellular reductive conditions and acidic tumor microenvironments. The nanohybrids can be effectively internalized into A549 cells (a carcinomic human alveolar basal epithelial cell line), resulting in a high DOX intracellular accumulation and an improved anticancer cytotoxicity when compared with free DOX, suggesting their high potential as a new platform for therapeutic delivery.[Abstract] [Full Text] [Related] [New Search]