These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Simple, sensitive and label-free electrochemical detection of microRNAs based on the in situ formation of silver nanoparticles aggregates for signal amplification.
    Author: Liu L, Chang Y, Xia N, Peng P, Zhang L, Jiang M, Zhang J, Liu L.
    Journal: Biosens Bioelectron; 2017 Aug 15; 94():235-242. PubMed ID: 28285201.
    Abstract:
    This work presented a simple, sensitive and label-free electrochemical method for the detection of microRNAs (miRNAs). It is based on the boronate ester covalent interaction between 4-mercaptophenylboronic acid (MPBA) and cis-diol at the 3'-terminal of miRNAs and the MPBA-induced in situ formation of citrate-capped silver nanoparticles (AgNPs) aggregates as labels on the electrode surface. In this design, MPBA acted as the cross-linker of AgNPs assembly. Specifically, the thiolated hairpin-like DNA probe was assembled onto the gold nanoparticles (nano-Au) modified electrode surface through the Ag-S interaction. After hybridization with the target miRNAs, MPBA was anchored onto the 3'-terminal of miRNAs through the formation of a boronate ester bond and then captured AgNP via the Ag-S interaction. Meanwhile, free MPBA molecules in solution induced the in situ assembly of AgNPs on electrode surface through the covalent interactions between α-hydroxycarboxylate of citrate and boronate of MPBA and the formation of Ag-S bonds. The electrochemical signal was therefore amplified due to the formation of AgNPs network architecture. To demonstrate the feasibility and analytical performances of the method, miRNA-21 was determined as a model analyte. The detection limit was found to be 20 aM. The viability of our method for biological sample assays was demonstrated by measuring the miRNA-21 contents in three human serum samples. In contrast to other signal-amplified electrochemical strategies for miRNAs detection, our method requires simple detection principle and easy operation procedure and obviates the specific modification of nanoparticles and capture/detection probes.
    [Abstract] [Full Text] [Related] [New Search]