These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Predictive Value of Age- and Sex-Specific Nomograms of Global Plaque Burden on Coronary Computed Tomography Angiography for Major Cardiac Events.
    Author: Naoum C, Berman DS, Ahmadi A, Blanke P, Gransar H, Narula J, Shaw LJ, Kritharides L, Achenbach S, Al-Mallah MH, Andreini D, Budoff MJ, Cademartiri F, Callister TQ, Chang HJ, Chinnaiyan K, Chow B, Cury RC, DeLago A, Dunning A, Feuchtner G, Hadamitzky M, Hausleiter J, Kaufmann PA, Kim YJ, Maffei E, Marquez H, Pontone G, Raff G, Rubinshtein R, Villines TC, Min J, Leipsic J.
    Journal: Circ Cardiovasc Imaging; 2017 Mar; 10(3):. PubMed ID: 28292858.
    Abstract:
    BACKGROUND: Age-adjusted coronary artery disease (CAD) burden identified on coronary computed tomography angiography predicts major adverse cardiovascular event (MACE) risk; however, it seldom contributes to clinical decision making because of a lack of nomographic data. We aimed to develop clinically pragmatic age- and sex-specific nomograms of CAD burden using coronary computed tomography angiography and to validate their prognostic use. METHODS AND RESULTS: Patients prospectively enrolled in phase I of the CONFIRM registry (Coronary CT Angiography Evaluation for Clinical Outcomes) were included (derivation cohort: n=21,132; 46% female) to develop CAD nomograms based on age-sex percentiles of segment involvement score (SIS) at each year of life (40-79 years). The relationship between SIS age-sex percentiles (SIS%) and MACE (all-cause death, myocardial infarction, unstable angina, and late revascularization) was tested in a nonoverlapping validation cohort (phase II, CONFIRM registry; n=3030, 44% female) by stratifying patients into 3 SIS% groups (≤50th, 51-75th, and >75th) and comparing annualized MACE rates and time to MACE using multivariable Cox proportional hazards models adjusting for Framingham risk and chest pain typicality. Age-sex percentiles were well fitted to second-order polynomial curves (men: R2=0.86±0.12; women: R2=0.86±0.14). Using the nomograms, there were 1576, 965, and 489 patients, respectively, in the ≤50th, 51-75th, and >75th SIS% groups. Annualized event rates were higher among patients with greater CAD burden (2.1% [95% confidence interval: 1.7%-2.7%], 3.9% [95% confidence interval: 3.0%-5.1%], and 7.2% [95% confidence interval: 5.4%-9.6%] in ≤50th, 51-75th, and >75th SIS% groups, respectively; P<0.001). Adjusted MACE risk was significantly increased among patients in SIS% groups above the median compared with patients below the median (hazard ratio [95% confidence interval]: 1.9 [1.3-2.8] for 51-75th SIS% group and 3.4 [2.3-5.0] for >75th SIS% group; P<0.01 for both). CONCLUSIONS: We have developed clinically pragmatic age- and sex-specific nomograms of CAD prevalence using coronary computed tomography angiography findings. Global plaque burden measured using SIS% is predictive of cardiac events independent of traditional risk assessment. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov. Unique identifier: NCT01443637.
    [Abstract] [Full Text] [Related] [New Search]