These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A biochemical chimera suggesting the existence of at least two dolichol-P-glucose:dolichol-P-P-oligosaccharide glucosyltransferases.
    Author: Iñón de Iannino N, Dankert MA.
    Journal: Arch Biochem Biophys; 1988 Jan; 260(1):139-45. PubMed ID: 2829724.
    Abstract:
    As previously reported, incubation of liver dolichol-P, UDP-[14C]Gal, and a particulate preparation of Acetobacter xylinum leads to the synthesis of dolichol-P-[14C]Gal (P. Romero, R. Garcia, and M. Dankert (1977) Mol. Cell. Biochem. 16, 205-212). It is now reported that upon incubation of the latter with rat liver microsomes, [14C-galactose]-Gal1Man9GlcNAc2-P-P-dolichol and [14C-galactose]Gal1Glc1Man9GlcNAc2-P-P-dolichol are formed. The galactosyl residues appeared to be (1,3)-linked in the same positions as the glucose units in the respective physiological compounds. No lipid-linked Gal1Glc2Man9GlcNAc2 was formed, thus strongly suggesting the presence of at least two dolichol-P-Glc:dolichol-P-P-oligosaccharide glucosyltransferases, only one of which is able to use dolichol-P-Gal as substrate. Incubation of the galactosylated dolichol-P-P derivatives with rat liver microsomes led to the transfer of the oligosaccharides to microsomal proteins. No endogenous, membrane-bound glycosidases were able to remove the galactose residues but mannose units were excised by endogenous neutral mannosidases.
    [Abstract] [Full Text] [Related] [New Search]