These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Simple and rapid radiosynthesis of N-18F-labeled glutamic acid as a hepatocellular carcinoma PET tracer. Author: Sun A, Liu S, Tang X, Nie D, Tang G, Zhang Z, Wen F, Wang X. Journal: Nucl Med Biol; 2017 Jun; 49():38-43. PubMed ID: 28301817. Abstract: INTRODUCTION: We have reported that N-(2-18F-fluoropropionyl)-L-glutamate (18F-FPGLU) showed good tumor-to-background contrast and 18F-FPGLU was prepared via complex multi-step reaction sequence; here, it is synthesized by a facile two-step reaction sequence. The objectives of this study are to synthesize 18F-FPGLU via a two-step reaction sequence and to evaluate the value of 18F-FPGLU in nude mice bearing human hepatocellular carcinoma SMCC-7721 (HCC SMCC-7721). METHODS: 18F-FPGLU was synthetized from the precursor (2S)-dimethyl 2-(2-bromopropanamido)pentanedioate via the two-step on-column hydrolysis using a modified commercial FDG synthesizer. To investigate the transport mechanism of 18F-FPGLU, we conducted a series of competitive inhibition experiments on HCC SMCC-7721 cells in the absence or presence of Na+ and various types of inhibitors. Small-animal PET-CT imaging was performed on tumor-bearing nude mice using 18F-FPGLU and 2-18F-2-deoxy-D-glucose (18F-FDG). RESULTS: The radiochemical yield of 18F-FPGLU was up to 15±5% (EOS, n=10) in 35min with the two-step procedure and the radiochemical purity was higher than 95% with a specific activity of 30-40GBq/μmol. In vitro cell experiments show that 18F-FPGLU is primarily transported through the Na+-dependent system XAG- and Na+-independent system XC-. PET imaging in a tumor model indicates that 18F-FPGLU may be superior to 18F-FDG for hepatocellular carcinoma (HCC) imaging. CONCLUSION: An optimized route to prepare 18F-FPGLU was developed and 18F-FPGLU was synthetized from the precursor ((2S)-dimethyl 2-(2-bromopropanamido)pentanedioate) via the two-step on-column hydrolysis. 18F-FPGLU was a potential novel PET tracer for HCC imaging.[Abstract] [Full Text] [Related] [New Search]