These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of Co-overexpression of Nisin Key Genes on Nisin Production Improvement in Lactococcus lactis LS01.
    Author: Ni ZJ, Zhang XY, Liu F, Wang M, Hao RH, Ling PX, Zhu XQ.
    Journal: Probiotics Antimicrob Proteins; 2017 Jun; 9(2):204-212. PubMed ID: 28303477.
    Abstract:
    Nisin is a small antimicrobial peptide produced by several subset strains of Lactococcus lactis. To improve nisin yield in the producer L. lactis LS01, we proposed a successive fusion of nisA with nisRK and nisFEG into a single shuttle expression vector pMG36e under the control of the native strong constitutive promoter p32. Subsequently, the recombinant vectors were transplanted into the producer cell through electroporation. Nisin productivity was determined through sodium dodecyl sulfate-polyacrylamide gel electrophoresis and bioactivity assays. Expression of nisin peptide was detected by agar diffusion bioassay, and the transcriptional levels of the target genes involved in nisin biosynthesis were investigated via semi-quantitative reverse transcription PCR expression analysis using 16S ribosomal RNA (rRNA) as an internal control. Results suggested that the introduction of empty plasmid did not affect nisin production of L. lactis LS01, whereas by our rational construction and screening, the engineered strain co-overexpressing nisA, nisRK, and nisFEG achieved a maximum increment in bioactive nisin production with a yield of 2470 IU/ml in shake flasks and 4857 IU/ml in 1.0-l fermenters, which increased by approximately 66.3 and 52.6% (P < 0.05), respectively, compared with that of the original strain under the given fermentation conditions. Meanwhile, the transcriptional analysis revealed that the expression of most of these multicopy genes except nisE at transcriptional level were upregulated in the two recombinant strains (LS01/pAR and LS01/pARF), possibly contributing to the improved nisin production. Therefore, this study would provide a potential strategy to improve the economic benefits of nisin manufacture for large-scale industrial production.
    [Abstract] [Full Text] [Related] [New Search]