These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: High-density polystyrene-grafted silver nanoparticles and their use in the preparation of nanocomposites with antibacterial properties. Author: Krystosiak P, Tomaszewski W, Megiel E. Journal: J Colloid Interface Sci; 2017 Jul 15; 498():9-21. PubMed ID: 28315584. Abstract: The achievement of uniform nanoparticles distribution in polymer matrix is still a major challenge in the design and fabrication of polymer nanocomposites with desired properties. In this paper we propose a novel approach for the preparation of homogeneous polystyrene/silver nanocomposites utilizing Nitroxide Mediated Radical Polymerization (NMRP). In the first step of the developed procedure, the polystyrene grafted silver nanoparticles (Ag@PS) with well-defined core-shell structure and exceptionally high grafting density (from 2 chains/nm2 to 5.9 chains/nm2) have been synthesized through late injection of nitroxide-coated silver nanoparticles (N-AgNPs) into a TEMPOL mediated styrene polymerization system. Afterwards, the synthesized Ag@PS have been used for the preparation of nanocomposites (PS/Ag@PS) by mixing them with narrow-dispersity polystyrenes and thermoforming at 140°C. Due to the high flexibility of polymer chains attached to silver surface through nitroxide linker, free volume effect enables interpenetration of polystyrene molecules that provides excellent mutual miscibility of Ag@PS with polymer matrix. The synthesized nanohybrids (Ag@PS) and their nanocomposites (PS/Ag@PS) exhibit effective antibacterial activity with respect to pathogenic bacteria: Pseudomonas aeruginosa (Gram-negative representative) and Staphylococcus aureus (Gram-positive representative).[Abstract] [Full Text] [Related] [New Search]