These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Flexible and Thermostable Graphene/SiC Nanowire Foam Composites with Tunable Electromagnetic Wave Absorption Properties.
    Author: Han M, Yin X, Hou Z, Song C, Li X, Zhang L, Cheng L.
    Journal: ACS Appl Mater Interfaces; 2017 Apr 05; 9(13):11803-11810. PubMed ID: 28317374.
    Abstract:
    Three-dimensional (3D) flexible foams consisting of reduced graphene oxides (rGO) and in situ grown SiC nanowires (NWs) were prepared using freeze-drying and carbothermal reduction processes. By means of incorporating SiC nanowires into rGO foams, both the thermostability and electromagnetic absorption of the composites were improved. It was demonstrated that rGO/SiC NW foams were thermostable beyond ∼630 °C (90% weight retention in air atmosphere). As expected, rGO/SiC NW foams in the poly(dimethylsiloxane) matrix achieved effective absorption in the entire X-band (8.2-12.4 GHz) with a thinner thickness (3 mm) in comparison with those of the pure rGO foams. It is revealed that SiC nanowires with abundant stacking faults, twinning interfaces, and bridged junctions play an important role in the enhanced electromagnetic absorption performance, in addition to the contribution of interconnected graphene networks. Hierarchical rGO/SiC NW foams not only are efficient absorbers in the critical environments but also can be applied in photocatalytic and thermal-management fields.
    [Abstract] [Full Text] [Related] [New Search]