These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Endothelium-dependent modulation of angiotensin II-induced contraction in blood vessels. Author: Gruetter CA, Ryan ET, Lemke SM, Bailly DA, Fox MK, Schoepp DD. Journal: Eur J Pharmacol; 1988 Jan 27; 146(1):85-95. PubMed ID: 2832199. Abstract: The influence of endothelium on angiotensin II-induced contraction was investigated in rings of rat aorta, bovine coronary artery, bovine intrapulmonary artery and bovine intrapulmonary vein. Destruction of endothelium significantly enhanced angiotensin II-induced contraction in rat aorta and bovine coronary artery, but not in bovine intrapulmonary artery and bovine intrapulmonary vein. Indomethacin (10(-5) M) did not alter angiotensin II-induced contraction in rat aorta or bovine coronary artery. However, hemoglobin (10(-5) M) or methylene blue (10(-5) M) significantly enhanced angiotensin II-induced contraction in rat aorta and bovine coronary artery with, but not without, endothelium. Intimal rubbing did not affect stimulation of phosphoinositide hydrolysis by angiotensin II in rat aorta. The findings demonstrate that angiotensin II-induced contraction in vascular rings can be modulated by endothelium. However, the effect of endothelium apparently depends upon the species and vascular bed from which the vessel is isolated. Results obtained using inhibitors suggest that in rat aorta and bovine coronary artery release of endothelium-derived relaxant factor (EDRF), rather than cyclooxygenase products, is involved in mediating the inhibitory influence of endothelium. Further, similar stimulation of phosphoinositide hydrolysis in intimally rubbed and unrubbed rat aorta suggests that EDRF does not modulate angiotensin II-induced contraction in this vessel by inhibiting angiotensin II stimulation of phosphoinositide hydrolysis.[Abstract] [Full Text] [Related] [New Search]