These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Collagen-cellulose nanocrystal scaffolds containing curcumin-loaded microspheres on infected full-thickness burns repair.
    Author: Guo R, Lan Y, Xue W, Cheng B, Zhang Y, Wang C, Ramakrishna S.
    Journal: J Tissue Eng Regen Med; 2017 Dec; 11(12):3544-3555. PubMed ID: 28326684.
    Abstract:
    Burn infection is a serious problem that delays wound healing and leads to death. Curcumin (Cur) has been shown to exhibit antioxidant, anti-inflammatory, antimicrobial and anticarcinogenic activity. However, its instability, extremely low aqueous solubility and bioavailability in physiological fluids may make it difficult to maintain local Cur concentrations above the minimum inhibitory concentration for burn infection treatment. The objective of this study was to construct complexes of Cur/gelatin microspheres (GMs) and porous collagen (Coll)-cellulose nanocrystals (CNCs) composite scaffolds for full-thickness burn infection treatment. The Cur/GMs/Coll-CNCs scaffolds had high porosity, available pore size, and a long and sustained Cur release profile. Furthermore, the composite scaffold exhibited remarkably strong antibacterial activity. Hence, we evaluated the wound-healing effects and antibacterial properties of Cur/GMs/Coll-CNCs scaffolds in a rat full-thickness burn infection model. The Cur/GMs/Coll-CNCs scaffold was able to prevent not only local inflammation but also accelerated dermis regeneration. Thus, we conclude that Cur/GMs/Coll-CNCs scaffolds can act as an effective dermal regeneration template for full-thickness burn wound infection healing in rats models. Copyright © 2017 John Wiley & Sons, Ltd.
    [Abstract] [Full Text] [Related] [New Search]