These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Evolutionary history of the hybridogenetic hybrid frog Rana esculenta as deduced from mtDNA analyses.
    Author: Spolsky C, Uzzell T.
    Journal: Mol Biol Evol; 1986 Jan; 3(1):44-56. PubMed ID: 2832687.
    Abstract:
    mtDNA of the hybridogenetic hybrid frog Rana esculenta from Switzerland, Austria, and Poland was compared to mtDNA of the parental species R. ridibunda and R. lessonae using electrophoretic analysis of restriction enzyme fragments. Two mtDNA phenotypes, with 3.4% sequence divergence, are present in R. lessonae: type C is found in Poland, and type D is found in Switzerland. Rana ridibunda from Poland has either of two mtDNA phenotypes: type A is the typical ridibunda mtDNA, and type B is a lessonae mitochondrial genome, introgressed into R. ridibunda, that differs from type C mtDNA of R. lessonae by only 0.3%. Each of the three lessonae genomes differs from A, the typical ridibunda mtDNA, by approximately 8%. All four types of mtDNA (A and B of R. ridibunda, C and D of R. lessonae) are found in R. esculenta. Of 62 R. esculenta from Poland, 58 had type C, three had type A, and one had type B mtDNA. All nine R. esculenta from Switzerland had type D mtDNA. All three R. esculenta from Austria, from a population in which males of R. esculenta are rare, had ridibunda mtDNA, two having type B and one having type A. Both field observations and studies of mating preference indicate that the primary hybridizations that produce R. esculenta are between R. ridibunda females and R. lessonae males; thereafter, R. esculenta lineages are usually maintained by matings of R. esculenta females with R. lessonae males. The presence of ridibunda mtDNA in the three R. esculenta sampled from Austria, its occasional presence in R. esculenta populations in Poland, and its absence from R. esculenta in Switzerland support both the direction of the original hybridization and the rarity of formation of new R. esculenta lineages. The preponderance of R. esculenta individuals with lessonae mtDNA in our samples from central Europe suggests that most lineages have gone through at least one mating between an R. lessonae female and an R. esculenta male. This reveals a greater reproductive role for R. esculenta males than their partial sterility and infrequent matings would suggest.
    [Abstract] [Full Text] [Related] [New Search]