These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Reconstruction of Large-scale Defects with a Novel Hybrid Scaffold Made from Poly(L-lactic acid)/Nanohydroxyapatite/Alendronate-loaded Chitosan Microsphere: in vitro and in vivo Studies.
    Author: Wu H, Lei P, Liu G, Shrike Zhang Y, Yang J, Zhang L, Xie J, Niu W, Liu H, Ruan J, Hu Y, Zhang C.
    Journal: Sci Rep; 2017 Mar 23; 7(1):359. PubMed ID: 28337023.
    Abstract:
    A chitosan-based microsphere delivery system has been fabricated for controlled release of alendronate (AL). The present study aimed to incorporate the chitosan/hydroxyapatite microspheres-loaded with AL (CH/nHA-AL) into poly(L-lactic acid)/nanohydroxyapatite (PLLA/nHA) matrix to prepare a novel microspheres-scaffold hybrid system (CM-ALs) for drug delivery and bone tissue engineering application. The characteristics of CM-ALs scaffolds containing 10% and 20% CH/nHA-AL were evaluated in vitro, including surface morphology and porosity, mechanical properties, drug release, degradation, and osteogenic differentiation. The in vivo bone repair for large segmental radius defects (1.5 cm) in a rabbit model was evaluated by radiography and histology. In vitro study showed more sustained drug release of CM-AL-containing scaffolds than these of CM/nHA-AL and PLLA/nHA/AL scaffolds, and the mechanical and degradation properties of CM-ALs (10%) scaffolds were comparable to that of PLLA/nHA control. The osteogenic differentiation of adipose-derived stem cells (ASCs) was significantly enhanced as indicated by increased alkaline phosphates (ALP) activity and calcium deposition. In vivo study further showed better performance of CM-ALs (10%) scaffolds with complete repair of large-sized bone defects within 8 weeks. A microspheres-scaffold-based release system containing AL-encapsulated chitosan microspheres was successfully fabricated in this study. Our results suggested the promising application of CM-ALs (10%) scaffolds for drug delivery and bone tissue engineering.
    [Abstract] [Full Text] [Related] [New Search]