These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Relative biological value of 1α-hydroxycholecalciferol to 25-hydroxycholecalciferol in broiler chicken diets. Author: Han JC, Chen GH, Zhang JL, Wang JG, Qu HX, Yan YF, Yang XJ, Cheng YH. Journal: Poult Sci; 2017 Jul 01; 96(7):2330-2335. PubMed ID: 28339866. Abstract: This study was conducted to evaluate the relative biological value (RBV) of 1α-hydroxycholecalciferol (1α-OH-D3) to 25-hydroxycholecalciferol (25-OH-D3) in one- to 21-day-old broiler chickens fed calcium (Ca)- and phosphorus (P)-deficient diets. On the d of hatch, 450 male Ross 308 broiler chickens were weighed and randomly allotted to 9 treatments with 5 replicates of 10 birds per replicate. The basal diet contained 0.50% Ca and 0.25% non-phytate phosphorus (NPP) but was not supplemented with cholecalciferol (vitamin D3). The levels of Ca and NPP in basal diets were lower than those recommended by NRC (1994). 25-OH-D3 was fed at zero, 1.25, 2.5, 5.0, and 10.0 μg/kg, and 1α-OH-D3 was fed at 0.625, 1.25, 2.5, and 5.0 μg/kg. The RBV of 1α-OH-D3 to 25-OH-D3 based on vitamin D intake was determined by the slope ratio method. Results showed that 25-OH-D3 or 1α-OH-D3 improved the growth performance and decreased the mortality in one- to 21-day-old broilers. A linear relationship was observed between the level of 25-OH-D3 or 1α-OH-D3 and mineralization of the femur, tibia, or metatarsus. The RBV of 1α-OH-D3 to 25-OH-D3 were 234, 253, and 202% when the weight, ash weight, and Ca percentage of femur were used as criteria. The corresponding RBV of 1α-OH-D3 to 25-OH-D3 were 232 to 263% and 245 to 267%, respectively, when tibia and metatarsus mineralization were used as criteria. These data indicate that when directly feeding a hormonally active form of vitamin D as 1α-OH-D3 proportionally less is needed than when using the precursor (25-OH-D3) in diets deficient in Ca and P.[Abstract] [Full Text] [Related] [New Search]