These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Gas-Phase Conformations and N-Glycosidic Bond Stabilities of Sodium Cationized 2'-Deoxyguanosine and Guanosine: Sodium Cations Preferentially Bind to the Guanine Residue.
    Author: Zhu Y, Hamlow LA, He CC, Lee JK, Gao J, Berden G, Oomens J, Rodgers MT.
    Journal: J Phys Chem B; 2017 Apr 27; 121(16):4048-4060. PubMed ID: 28355483.
    Abstract:
    2'-Deoxyguanosine (dGuo) and guanosine (Guo) are fundamental building blocks of DNA and RNA nucleic acids. In order to understand the effects of sodium cationization on the gas-phase conformations and stabilities of dGuo and Guo, infrared multiple photon dissociation (IRMPD) action spectroscopy experiments and complementary electronic structure calculations are performed. The measured IRMPD spectra of [dGuo+Na]+ and [Guo+Na]+ are compared to calculated IR spectra predicted for the stable low-energy structures computed for these species to determine the most favorable sodium cation binding sites, identify the structures populated in the experiments, and elucidate the influence of the 2'-hydroxyl substituent on the structures and IRMPD spectral features. These results are compared with those from a previous IRMPD study of the protonated guanine nucleosides to elucidate the differences between sodium cationization and protonation on structure. Energy-resolved collision-induced dissociation (ER-CID) experiments and survival yield analyses of protonated and sodium cationized dGuo and Guo are performed to compare the effects of these cations toward activating the N-glycosidic bonds of these nucleosides. For both [dGuo+Na]+ and [Guo+Na]+, the gas-phase structures populated in the experiments are found to involve bidentate binding of the sodium cation to the O6 and N7 atoms of guanine, forming a 5-membered chelation ring, with guanine found in both anti and syn orientations and C2'-endo (2T3 or 3T2) puckering of the sugar. The ER-CID results, IRMPD yields and the computed C1'-N9 bond lengths indicate that sodium cationization activates the N-glycosidic bond less effectively than protonation for both dGuo and Guo. The 2'-hydroxyl substituent of Guo is found to impact the preferred structures very little except that it enables a 2'OH···3'OH hydrogen bond to be formed, and stabilizes the N-glycosidic bond relative to that of dGuo in both the sodium cationized and protonated complexes.
    [Abstract] [Full Text] [Related] [New Search]