These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Targeting effect of microRNA on CD133 and its impact analysis on proliferation and invasion of glioma cells. Author: Zhao C, Ma ZG, Mou SL, Yang YX, Zhang YH, Yao WC. Journal: Genet Mol Res; 2017 Mar 30; 16(1):. PubMed ID: 28362995. Abstract: MiR-200b, a member of the microRNA-200 family, has been identified to be capable of suppressing glioma cell growth through targeting CREB1 or CD133. However, whether miR-200b affects the biological behavior (proliferation, invasion, and migration) of glioma cells is poorly understood. The aim of this study was to evaluate the effect of miR-200b on the biological behavior of glioma cells in vitro. MiRNA-200b mimics, miRNA-200b inhibitor, and mimic control were transfected into conventionally cultured glioma U251 cells, followed by measuring the expression of miR-200b and CD133 in transfected cells by RT-PCR; effect of miR-200b on CD133 mRNA 3'-UTR luciferase activity by luciferase reporter assay; proliferation activity of transfected U251 cells by MTT method; and changes in U251 cell invasion and migration by Transwell method after transfection. Compared to that in the miRNA-200b inhibitor, mimic control, and blank control groups, miRNA-200b expression was significantly increased and CD133 mRNA expression was significantly decreased in the mimic miRNA-200b group in a time-dependent manner (P < 0.05). Meanwhile, dual luciferase reporter assay showed that miR-200b could inhibit CD133 activity through binding to the 3'-UTR of CD133 mRNA (P < 0.05). Furthermore, the proliferation activity and invasion and migration abilities of U251 cells transfected with miRNA-200b mimic were significantly decreased (P < 0.05). In conclusion, overexpression of miR-200b inhibited the proliferation, invasion, and migration of glioma cells possibly through targeting CD133.[Abstract] [Full Text] [Related] [New Search]