These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characterization of base-pair opening in deoxynucleotide duplexes using catalyzed exchange of the imino proton. Author: Leroy JL, Kochoyan M, Huynh-Dinh T, Guéron M. Journal: J Mol Biol; 1988 Mar 20; 200(2):223-38. PubMed ID: 2836594. Abstract: Using nuclear magnetic resonance line broadening, longitudinal relaxation and magnetization transfer from water, we have measured the imino proton exchange times in the duplex form of the 10-mer d-CGCGATCGCG and in seven other deoxy-duplexes, as a function of the concentration of exchange catalysts, principally ammonia. All exchange times are catalyst dependent. Base-pair lifetimes are obtained by extrapolation to infinite concentration of ammonia. Lifetimes of internal base-pairs are in the range of milliseconds at 35 degrees C and ten times more at 0 degrees C. Lifetimes of neighboring pairs are different, hence base-pairs open one at a time. Lifetimes of d(G.C) are about three times longer than those of d(A.T). The nature of neighbors usually has little effect, but lifetime anomalies that may be related to sequence and/or structure have been observed. In contrast, there is no anomaly in the A.T base-pair lifetimes of d-CGCGA[TA]5TCGCG, a model duplex of poly[d(A-T)].poly[d(A-T)]. The d(A.T) lifetimes are comparable to those of r(A.U) that we reported previously. End effects on base-pair lifetimes are limited to two base-pairs. The low efficiency of exchange catalysts is ascribed to the small dissociation constant of the deoxy base-pairs, and helps to explain why exchange catalysis had been overlooked in the past. This resulted in a hundredfold overestimation of base-pair lifetimes. Cytosine amino proteins have been studied in the duplex of d-CGm5CGCG. Exchange from the closed base-pair is indicated. Hence, the use of an amino exchange rate to evaluate the base-pair dissociation constant would result in erroneous, overestimated values. Catalyzed imino proton exchange is at this time the safest and most powerful, if not the only probe of base-pair kinetics. We propose that the single base-pair opening event characterized here may be the only mode of base-pair disruption, at temperatures well below the melting transition.[Abstract] [Full Text] [Related] [New Search]