These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Slice profile effects on nCPMG SS-FSE.
    Author: Gibbons EK, Le Roux P, Pauly JM, Kerr AB.
    Journal: Magn Reson Med; 2018 Jan; 79(1):430-438. PubMed ID: 28370409.
    Abstract:
    PURPOSE: To determine the effects of the RF refocusing pulse profile on the magnitude of the transverse signal smoothness throughout the echo train in non-Carr-Purcell-Meiboom-Gill (nCPMG) single-shot fast spin echo (SS-FSE) imaging and to design an RF refocusing pulse that provides improved signal stability. THEORY AND METHODS: nCPMG SS-FSE quadratic phase modulation requires sufficiently high and uniform refocusing flip angle to achieve a stable signal. Typically, refocusing pulses used in SS-FSE sequences are designed for minimum duration to minimize echo spacing and as a consequence have poor selectivity. However, delay-insensitive variable rate excitation Shinnar-Le Roux (DV-SLR) refocusing pulses can achieve both improved selectivity as well as a short duration. This class of RF pulse is compared against a traditional low time-bandwidth refocusing pulse in a nCPMG SS-FSE in simulation, phantom, and in vivo. RESULTS: DV-SLR pulses achieve a more stable signal in simulation, phantom, and in vivo cases while maintaining an appropriately short duration as well as not dramatically increasing specific absorption rate (SAR) accumulation. CONCLUSION: The nCPMG SS-FSE method demonstrates improved robustness when a more selective refocusing pulse is used. Refocusing pulses that use a time-varying excitation gradient can achieve this selectivity while maintaining short echo spacing. Magn Reson Med 79:430-438, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
    [Abstract] [Full Text] [Related] [New Search]