These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Activation of K+ conductance in basolateral membrane of toad urinary bladder by oxytocin and cAMP.
    Author: Van Driessche W, Erlij D.
    Journal: Am J Physiol; 1988 Jun; 254(6 Pt 1):C816-21. PubMed ID: 2837095.
    Abstract:
    We incubated toad urinary bladders with Na+-free, isotonic K+ solutions on the apical side and increased the cationic conductance of the apical membrane with nystatin (150 U/ml). Under these conditions, the short-circuit current is mostly carried by K+ flowing from mucosa to serosa. Impedance measurements showed that in nystatin-treated preparations, the electrical behavior of the tissue is dominated by the basolateral membrane properties. Oxytocin (0.1 U/ml) produced an increase of the current and the conductance of the basolateral membrane. Both the resting and the oxytocin-stimulated current were rapidly and reversibly blocked by serosal Ba2+. Addition of the adenosine 3',5'-cyclic monophosphate (cAMP) analogue [8-(4-chloropheylthio)-cAMP] to the basolateral solution mimicked the effects of oxytocin. These results show that oxytocin and cAMP stimulate a potassium conductance in the basolateral membrane and that the stimulation is not related to an increase in sodium entry through the apical membrane. Addition of ouabain (10(-3) M) to the serosal solution did not modify the stimulation by oxytocin, indicating that the activated pathway is not linked to the rate of turnover of the Na+ pump.
    [Abstract] [Full Text] [Related] [New Search]