These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Phenotypic and genetic characterization of cytochrome c2 deficient mutants of Rhodobacter sphaeroides. Author: Donohue TJ, McEwan AG, Van Doren S, Crofts AR, Kaplan S. Journal: Biochemistry; 1988 Mar 22; 27(6):1918-25. PubMed ID: 2837274. Abstract: Rhodobacter sphaeroides mutants lacking cytochrome c2 (cyt c2) have been constructed by site-specific recombination between the wild-type genomic cyt c2 structural gene (cycA) and a suicide plasmid containing a defective cyc operon where deletion of cycA sequences was accompanied by insertion of a KnR gene. Southern blot analysis confirmed that the wild-type cyc operon was exchanged for the inactivated cycA gene, presumably by double-reciprocal recombination. Spectroscopic and immunochemical measurements, together with genetic complementation, established that the inability of these mutants to grow under photosynthetic conditions was due to the lack of cyt c2. The cyt c2 deficient strains reduced photooxidized reaction center complexes approximately 4 orders of magnitude more slowly than the parent strain. The phenotype and characteristics of these mutants were restored when a wild-type cyc operon was introduced on a stable low copy number plasmid. These experiments provide the first genetic evidence for the obligatory role of cyt c2 in wild-type cyclic photosynthetic electron transport in R. sphaeroides. We have also observed that the R. sphaeroides cyt c2 deficient strains spontaneously gave rise to photosynthetically competent pseudorevertants at a frequency which suggests that the cyt c2 independent photosynthetic electron transport which suppresses the phenotype of the cyt c2 deficient strains was the result of a single mutation elsewhere in the genome.[Abstract] [Full Text] [Related] [New Search]