These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibition of the RANK/RANKL signaling with osteoprotegerin prevents castration-induced acceleration of bone metastasis in castration-insensitive prostate cancer. Author: Takayama K, Inoue T, Narita S, Maita S, Huang M, Numakura K, Tsuruta H, Saito M, Maeno A, Satoh S, Tsuchiya N, Habuchi T. Journal: Cancer Lett; 2017 Jul 01; 397():103-110. PubMed ID: 28373003. Abstract: Androgen deprivation therapy (ADT) for patients with metastatic or locally advanced prostate cancer reduces bone mineral density by stimulating receptor activator of nuclear factor kappa-B (RANK) signaling in osteoclasts. The involvement of the RANK/RANKL signaling in ADT-induced acceleration of bone metastasis in castration-insensitive prostate cancer was examined in a murine model using osteoprotegerin (OPG). Male Balb/c nude mice were divided into three groups: the non-castration, castration, and castration + OPG groups. PC-3M-luc-C6 was injected into the left ventricle of the mice. Recombinant OPG was injected intravenously twice weekly in the castration + OPG group. In-vivo imaging system (IVIS®) determined that the prevalence and photon counts of bone metastasis in the castration group were significantly higher than that in the non-castration and castration + OPG groups. The mean number of RANKL-positive osteoblasts and the mean serum RANKL level in the castration group were significantly higher than those in the non-castration group. RANKL-enhanced activation of osteoclasts was attenuated in the castration + OPG group. These results suggest that the mechanisms of RANK/RANKL signaling are involved in the ADT-induced acceleration of bone metastasis in castration-insensitive prostate cancer.[Abstract] [Full Text] [Related] [New Search]