These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Starter feeding altered ruminal epithelial bacterial communities and some key immune-related genes' expression before weaning in lambs. Author: Liu J, Bian G, Sun D, Zhu W, Mao S. Journal: J Anim Sci; 2017 Feb; 95(2):910-921. PubMed ID: 28380582. Abstract: To characterize changes in ruminal epithelial bacterial communities and immune-related gene expression during concentrate starter feeding before weaning in lambs, 6 pairs of 10-d-old Hu lamb twins were selected: 1 kid received milk (M, = 6), and the other received milk plus starter (M+S, = 6). All lambs received hay and water ad libitum and were slaughtered at 56-d-old. Their rumen fluid was collected to determine ruminal pH and VFA levels; rumen epithelia were collected to characterize their bacterial communities using Illumina MiSeq sequencing and to determine mRNA expression of immune-related genes using quantitative real-time PCR (qRT-PCR). Results showed that starter feeding caused a decreased ruminal pH ( = 0.004) and increased concentrations of acetate, propionate, butyrate, and total VFA ( < 0.001). Principal coordinate analysis and analysis of molecular variance revealed that starter feeding affected ruminal epithelial bacterial communities in the lambs ( = 0.001), with higher relative abundance of dominant taxa , unclassified BS11 gut group, , unclassified Synergistaceae, , , , , and ( < 0.05) but lesser relative abundance of , unclassified Bacteroidales, unclassified Candidate, unclassified RF9, and ( < 0.05). Additionally, a phylogenetic investigation of communities by reconstruction of unobserved states analysis indicated that starter feeding markedly increased relative abundance values of dominant ruminal epithelial bacterial-inferred genes related to other ion-coupled transporters, pentose and glucuronate interconversions, glycosyltransferases, other glycan degradation, AA metabolism, sphingolipid metabolism, biotin metabolism, glycosphingolipid biosynthesis-globo series, and lysosome ( < 0.05) but decreased relative abundance values of genes related to carbon fixation pathways in prokaryotes and energy metabolism ( < 0.05) in the lambs. The qRT-PCR results showed that starter feeding decreased the relative mRNA expression of IL-6 ( = 0.003), IL-10 ( = 0.013), and interferon γ ( = 0.003). Collectively, this study showed that starter feeding could alter ruminal epithelial bacterial communities and some key immune-related genes' expression in preweaned lambs. All these responses of ruminal epithelial bacteria and the immune system would be beneficial for starter-fed lambs to be weaned.[Abstract] [Full Text] [Related] [New Search]