These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Pressure-Dependent Rate Rules for Intramolecular H-Migration Reactions of Hydroperoxyalkylperoxy Radicals in Low Temperature.
    Author: Yao Q, Sun XH, Li ZR, Chen FF, Li XY.
    Journal: J Phys Chem A; 2017 Apr 27; 121(16):3001-3018. PubMed ID: 28383903.
    Abstract:
    Intramolecular H-migration reaction of hydroperoxyalkylperoxy radicals (O2QOOH) is one of the most important reaction families in the low-temperature oxidation of hydrocarbon fuels. This reaction family is first divided into classes depending upon H atom transfer from -OOH bonded carbon or non-OOH bonded carbon, and then the two classes are further divided depending upon the ring size of the transition states and the types of the carbons from which the H atom is transferred. High pressure limit rate rules and pressure-dependent rate rules for each class are derived from the rate constants of a representative set of reactions within each class using electronic structure calculations performed at the CBS-QB3 level of theory. For the intramolecular H-migration reactions of O2QOOH radicals for abstraction from an -OOH substituted carbon atom (-OOH bonded case), the result shows that it is acceptable to derive the rate rules by taking the average of the rate constants from a representative set of reactions with different sizes of the substitutes. For the abstraction from a non-OOH substituted carbon atom (non-OOH bonded case), rate rules for each class are also derived and it is shown that the difference between the rate constants calculated by CBS-QB3 method and rate constants estimated from the rate rules may be large; therefore, to get more reliable results for the low-temperature combustion modeling of alkanes, it is better to assign each reaction its CBS-QB3 calculated rate constants, instead of assigning the same values for the same reaction class according to rate rules. The intramolecular H-migration reactions of O2QOOH radicals (a thermally equilibrated system) are pressure-dependent, and the pressure-dependent rate constants of these reactions are calculated by using the Rice-Ramsberger-Kassel-Marcus/master-equation theory at pressures varying from 0.01 to 100 atm. The impact of molecular size on the pressure-dependent rate constants of the intramolecular H-migration reactions of O2QOOH radicals has been studied, and it is shown that the pressure dependence of the rate constants of intramolecular H-migration reactions of O2QOOH radicals decreases with the molecular size at low temperatures and the impact of molecular size on the pressure-dependent rate constants decreases as temperature increases. It is shown that it is acceptable to derive the pressure-dependent rate rules by taking the average of the rate constants from a representative set of reactions with different sizes of the substitutes. The barrier heights follow the Evans-Polanyi relationship for each type of intramolecular hydrogen-migration reaction studied. All calculated rate constants are fitted by a nonlinear least-squares method to the form of a modified Arrhenius rate expression at pressures varying from 0.01 to 100 atm and at the high-pressure limit. Furthermore, thermodynamic parameters for all species involved in these reactions are calculated by the composite CBS-QB3 method and are given in NASA format.
    [Abstract] [Full Text] [Related] [New Search]