These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: miR-107 functions as a tumor suppressor in human esophageal squamous cell carcinoma and targets Cdc42.
    Author: Sharma P, Saini N, Sharma R.
    Journal: Oncol Rep; 2017 May; 37(5):3116-3127. PubMed ID: 28393193.
    Abstract:
    Previously, we reported significantly decreased expression of tissue and circulating miR-107 in esophageal cancer (EC). However, its role in esophageal tumorigenesis still remains elusive. Therefore, the aim of the present study was to analyze the role of miR-107 in esophageal squamous cell carcinoma (ESCC). The role of miR-107 in ESCC was evaluated using MTT assay, cell cycle analysis by flow cytometry, annexin assay, colony formation assay and scratch assay. Overexpression of miR-107 in KYSE-410 cells suppressed cell proliferation at 72 h post-transfection (p=0.0001). Moreover, a significant increase in the G0/G1 population (p<0.001) and a significant decrease in the G2/M (p=0.032) population was also observed in the miR-107-treated cells as compared to the negative control (NC). Notably, miR-107 overexpression attenuated the colony formation potential of ESCC cells by 41.83% as compared to the NC (p=0.007). miR-107 mimic inhibited ESCC cell migration in a time-dependent manner, reducing the wound closure to only 50.41±7.23% at 72 h post-transfection (p=0.041). Further analysis by Matrigel invasion assay revealed a significant decrease in the migratory and invasive abilities of the KYSE-410 cells at 72 h post miR-107 transfection. qRT-PCR analysis showed decreased expression of one of the newly identified targets of miR-107, Cdc42, at the mRNA level. Further validation by western blotting confirmed a significant reduction in the identified target at the protein level. In addition, the relative luciferase activity of the reporter containing Cdc42 3'UTR was significantly decreased upon miR-107 co-transfection, indicating it to be a direct target of miR-107. Our results herein document that miR-107 functions as a tumor suppressor and inhibits the proliferation, migration and invasion of ESCC cells. Moreover, this is the first report showing Cdc42 as a downstream target of miR-107.
    [Abstract] [Full Text] [Related] [New Search]