These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: piRNA-3312: A Putative Role for Pyrethroid Resistance in Culex pipiens pallens (Diptera: Culicidae).
    Author: Guo J, Ye W, Liu X, Sun X, Guo Q, Huang Y, Ma L, Sun Y, Shen B, Zhou D, Zhu C.
    Journal: J Med Entomol; 2017 Jul 01; 54(4):1013-1018. PubMed ID: 28399266.
    Abstract:
    Piwi-interacting RNAs (piRNAs) are a newly identified class of small noncoding RNAs. They are associated with chromatin organization, messenger RNA stability, and genome structure. Although the overexpression of piRNA-3312 in deltamethrin-susceptible (DS) strain of Culex pipiens pallens (L.) was observed in our previous large-scale transcriptome data, the roles of piRNA in insecticide resistance have not been clearly defined. The aim of the present study was to investigate how piRNA-3312 is involved in insecticide resistance. The lower expression level of piRNA-3312 in deltamethrin-resistant (DR) strain of Cx. pipiens pallens was confirmed by quantitative real time polymerase chain reaction (qRT-PCR). Overexpression of piRNA-3312 in the DR strain made the mosquitoes more sensitive to deltamethrin, whereas inhibiting the expression of piRNA-3312 in the DS strain made the mosquitoes more resistant to deltamethrin. Piwi-interacting RNA-3312 was also found to bind 3' UTR (Untranslated Regions) of gut esterase 1 gene and could induce its degradation. In addition, knockdown of gut esterase 1 gene increased the sensitivity of DR strain to deltamethrin. In conclusion, we found that piRNA-3312 targeted the gut esterase 1 gene to negatively regulate the insecticide resistance. This finding facilitates the understanding of various functions of piRNAs and their association with insecticide resistance.
    [Abstract] [Full Text] [Related] [New Search]