These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Fatty acid uptake and blood flow in adipose tissue compartments of morbidly obese subjects with or without type 2 diabetes: effects of bariatric surgery. Author: Dadson P, Ferrannini E, Landini L, Hannukainen JC, Kalliokoski KK, Vaittinen M, Honka H, Karlsson HK, Tuulari JJ, Soinio M, Salminen P, Parkkola R, Pihlajamäki J, Iozzo P, Nuutila P. Journal: Am J Physiol Endocrinol Metab; 2017 Aug 01; 313(2):E175-E182. PubMed ID: 28400411. Abstract: Body fat accumulation, distribution, and metabolic activity are factors in the pathophysiology of obesity and type 2 diabetes (T2D). We investigated adipose blood flow, fatty acid uptake (FAU), and subcutaneous and visceral fat cellularity in obese patients with or without T2D. A total of 23 morbidly obese (mean body mass index = 42 kg/m2) patients were studied before and 6 mo after bariatric surgery; 15 nonobese subjects served as controls. Positron emission tomography was used to measure tissue FAU (with 18F-FTHA) and blood flow (with H215O); MRI was used for fat distribution and fat biopsy for adipocyte size. Obese subjects had subcutaneous hyperplasia and hypertrophy and lower blood flow; when expressed per cell, flow was similar to controls. FAU into subcutaneous and visceral depots was increased in the obese; per unit tissue mass, however, FAU was similar to controls but reduced in skeletal muscle. Fatty acid fractional extraction in subcutaneous fat and muscle was only increased in obese patients with T2D. We conclude that surgery reduces subcutaneous fat hyperplasia and hypertrophy; subcutaneous blood flow and FAU decrease in absolute terms and per cell while fractional FAU remains unchanged in T2D. In the obese, subcutaneous blood flow is a determinant of FAU and is coupled with cellularity; efficiency of FAU is enhanced in subcutaneous fat and muscle in T2D.[Abstract] [Full Text] [Related] [New Search]