These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Recessive male sterility in cabbage (Brassica oleracea var. capitata) caused by loss of function of BoCYP704B1 due to the insertion of a LTR-retrotransposon. Author: Ji JL, Yang LM, Fang ZY, Zhuang M, Zhang YY, Lv HH, Liu YM, Li ZS. Journal: Theor Appl Genet; 2017 Jul; 130(7):1441-1451. PubMed ID: 28405714. Abstract: The LTR-retrotransposon insertion in BoCYP704B1 is proved to be the primary cause of the male sterility in cabbage. Effective allele-specific markers were developed for marker-assisted selection of male sterile gene. 83121A is a spontaneous male sterile mutant identified from cabbage. Genetic analysis indicated that male sterility is controlled by a single recessive gene. Pollen wall formation in the 83121A mutant was severely defective, with a lack of sporopollenin or exine. To understand the mechanisms of male sterility in 83121A, transcription analysis using RNA-Seq was carried out in the buds of the male sterile line 83121A and the male fertile line 83121B, which are near-isogenic lines differing only in the fertility trait. Via expression analysis of differentially expressed genes involved in pollen exine development before the bicellular pollen stage, BoCYP704B1 was identified as a candidate gene, which was approximately downregulated 30-fold in 83121A. BoCYP704B1 is a member of the evolutionarily conserved CYP704B family, which is essential for sporopollenin formation. The BoCYP704B1 transcript is specifically detected in the developing anthers of wild-type cabbage. Further sequence analysis revealed that a 5424-bp long terminal repeat-retrotransposon (LTR-RT) was inserted into the first exon of BoCYP704B1 in 83121A, which is not found in wild-type plants. The insertion of LTR-RT not only reduced the expression of BoCYP704B1 but also altered structure of protein encoded by BoCYP704B1. Moreover, linkage analysis showed that the homozygotic mutational BoCYP704B1 always cosegregated with male sterility. These data suggest that the LTR-RT insertion in BoCYP704B1 hinders sporopollenin formation in 83121A leading to male sterility. The allele-specific markers developed in this study were effective for marker-assisted selection of the male sterile gene.[Abstract] [Full Text] [Related] [New Search]