These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Secondary Structural Changes of Intact and Disulfide Bridges-Cleaved Human Serum Albumins in Thermal Denaturation up to 130°C - Additive Effects of Sodium Dodecyl Sulfate on the Changes.
    Author: Moriyama Y, Takeda K.
    Journal: J Oleo Sci; 2017 May 01; 66(5):521-529. PubMed ID: 28413192.
    Abstract:
    The secondary structural changes of human serum albumin with the intact 17 disulfide bridges (HSA) and the disulfide bridges-cleaved human serum albumin (RCM-HSA) in thermal denaturation were examined. Most of the helical structures of HSA, whose original helicity was 66%, were sharply disrupted between 50 and 100°C. However, 14% helicity remained even at 130°C. The temperature dependence of the degree of disrupted helical structures of HSA was discussed in connection with questions about a general protein denaturation model. When HSA lost the disulfide bridges, about two-thirds of the original helices were disrupted. Although the helices of RCM-HSA remaining after the cleavage of the disulfide bridges were relatively resistant against the heat treatment, the helicity changed from 22% at 25°C to 14% at 130℃. The helicity of RCM-HSA at 130°C agreed with the helicity of HSA at the same temperature, indicating that the same helical moieties of the polypeptides remained unaffected at this high temperature. The additive effects of sodium dodecyl sulfate (SDS) on the structural changes of HSA and RCM-HSA in thermal denaturation were also examined. A slight amount of SDS protected the helical structures of HSA from thermal denaturation below 80°C. Upon cooling to 25°C after heat treatment at temperatures below 70°C with the coexistence of SDS of low concentrations, the helical structures of HSA were reformed to the original level at 25°C before heating. A similar tendency was also observed after heat treatment at 80°C. In contrast, the helical structures of the RCM-HSA complexes with SDS are completely recovered upon cooling to 25°C even after heat treatment up to 100°C. Similar investigations were also carried out on bovine serum albumins which had the intact 17 disulfide bridges and lost all of the bridges.
    [Abstract] [Full Text] [Related] [New Search]