These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Stability and activity of immobilized trypsin on carboxymethyl chitosan-functionalized magnetic nanoparticles cross-linked with carbodiimide and glutaraldehyde.
    Author: Sun J, Yang L, Jiang M, Shi Y, Xu B, Ma HL.
    Journal: J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Jun 01; 1054():57-63. PubMed ID: 28419926.
    Abstract:
    Enzyme cross-linkers, such as 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and glutaraldehyde (GA), have been used to improve the stability of immobilized enzymes. We have developed a relatively stable and high-activity immobilized trypsin through EDC and GA cross-linking. Carboxymethyl chitosan (CM-CTS)-functionalized magnetic nanoparticles (Fe3O4@CM-CTS) were prepared, and characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis, X-ray diffraction, and transmission electron microscopy. The CM-CTS loading of Fe3O4 @CM-CTS was 8.701%, and the CM-CTS coating did not cause any significant changes in the crystal structure of Fe3O4. The Fe3O4@CM-CTS nanoparticles exhibited superparamagnetic properties. Trypsin was successfully immobilized on Fe3O4@CM-CTS via EDC and GA cross-linking (Fe3O4@CM-CTS-EDC-TRY and Fe3O4@CM-CTS-GA-TRY, respectively). Trypsin immobilization was verified by FTIR and enzyme assays. Changes in the secondary structures of the immobilized trypsin were present in both Fe3O4@CM-CTS-EDC-TRY and Fe3O4@CM-CTS-GA-TRY. However, kinetic studies demonstrated that the immobilized trypsin retained efficient biocatalytic activity. Fe3O4@CM-CTS-EDC-TRY and Fe3O4@CM-CTS-GA-TRY both showed maximum catalytic activity at pH 8.4 and 45°C, and retained 71% and 88.5%, respectively, of their initial activities after 6 usage cycles, and 80% and 88% of their initial activities after being stored for 14 d at 4°C. The Fe3O4@CM-CTS-GA-TRY showed higher activity and conformational stability than Fe3O4@CM-CTS-EDC-TRY, which indicates that GA is effective for the immobilization of trypsin on Fe3O4@CM-CTS.
    [Abstract] [Full Text] [Related] [New Search]