These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The role of metabolic tumor volume (MTV) measured by [18F] FDG PET/CT in predicting EGFR gene mutation status in non-small cell lung cancer.
    Author: Liu A, Han A, Zhu H, Ma L, Huang Y, Li M, Jin F, Yang Q, Yu J.
    Journal: Oncotarget; 2017 May 16; 8(20):33736-33744. PubMed ID: 28422710.
    Abstract:
    Many noninvasive methods have been explored to determine the mutation status of the epidermal growth factor receptor (EGFR) gene, which is important for individualized treatment of non-small cell lung cancer (NSCLC). We evaluated whether metabolic tumor volume (MTV), a parameter measured by [18F] fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) might help predict EGFR mutation status in NSCLC. Overall, 87 patients who underwent EGFR genotyping and pretreatment PET/CT between January 2013 and September 2016 were reviewed. Clinicopathologic characteristics and metabolic parameters including MTV were evaluated. Univariate and multivariate analyses were used to assess the independent variables that predict mutation status to create prediction models. Forty-one patients (41/87) were identified as having EGFR mutations. The multivariate analysis showed that patients with lower MTV (MTV≤11.0 cm3, p=0.001) who were non-smokers (p=0.037) and had a peripheral tumor location (p=0.033) were more likely to have EGFR mutations. Prediction models using these criteria for EGFR mutation yielded a high AUC (0.805, 95% CI 0.712-0.899), which suggests that the analysis had good discrimination. In conclusion, NSCLC patients with EGFR mutations showed significantly lower MTV than patients with wild-type EGFR. Prediction models based on MTV and clinicopathologic characteristics could provide more information for the identification of EGFR mutations.
    [Abstract] [Full Text] [Related] [New Search]