These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Fexofenadine, a Putative In Vivo P-glycoprotein Probe, Fails to Predict Clearance of the Substrate Tacrolimus in Renal Recipients. Author: Vanhove T, Bouillon T, de Loor H, Annaert P, Kuypers D. Journal: Clin Pharmacol Ther; 2017 Dec; 102(6):989-996. PubMed ID: 28437851. Abstract: Whether the combined use of probe drugs for CYP3A4 and P-glycoprotein can clarify the relative contribution of these proteins to pharmacokinetic variability of a dual substrate like tacrolimus has never been assessed. Seventy renal recipients underwent simultaneous 8-h pharmacokinetic profiles for tacrolimus, the CYP3A4 probe midazolam, and the putative P-glycoprotein probe fexofenadine. Patients were genotyped for polymorphisms in CYP3A5, CYP3A4, ABCB1, ABCC2 and SLCO2B1, -1B1, and 1B3. Carriers of the ABCB1 2677G>A polymorphism displayed lower fexofenadine Cmax (-66%; P = 0.012) and a trend toward higher clearance (+157%; P = 0.078). Predictors of tacrolimus clearance were CYP3A5 genotype, midazolam clearance, hematocrit, weight, and age (R2 = 0.61). Fexofenadine pharmacokinetic parameters were not predictive of tacrolimus clearance. In conclusion, fexofenadine pharmacokinetics varied considerably between renal recipients but most of this variability remained unexplained, with only minor effects of genetic polymorphisms. Fexofenadine cannot be used to assess in vivo CYP3A4-P-glycoprotein interplay in tacrolimus-treated renal recipients.[Abstract] [Full Text] [Related] [New Search]