These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Purification of the 56-kDa component of the bacteriophage T7 primase/helicase and characterization of its nucleoside 5'-triphosphatase activity.
    Author: Bernstein JA, Richardson CC.
    Journal: J Biol Chem; 1988 Oct 15; 263(29):14891-9. PubMed ID: 2844790.
    Abstract:
    Bacteriophage T7 gene 4 protein, purified from phage-infected cells, consists of a mixture of a 56- and a 63-kDa species that provides primase and helicase activities for T7 DNA replication. The 56-kDa species has been purified 1800-fold from Escherichia coli cells containing a plasmid that encodes this gene 4 protein. The purified 56-kDa protein is homogeneous, as determined by denaturing gel electrophoresis, and is monomeric in its native form, as indicated by gel filtration. The binding of the 56-kDa protein to single-stranded DNA is stimulated by nucleoside 5'-triphosphates, as is the case for a mixture of the two molecular weight species. In the presence of DNA, the 56-kDa protein preferentially hydrolyzes dTTP (Bernstein, J. A., and Richardson, C. C. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 396-400). Since nucleoside 5'-triphosphatase activity is necessary for both helicase activity and for translocation of gene 4 protein to primase recognition sites, we have characterized this activity using the 56-kDa protein alone. In the DNA-dependent hydrolysis reaction, the enzyme displays a Km of 10 mM for dTTP, and a Vmax of 2.9 x 10(-5) M/min/mg of protein (at 2.5 micrograms/ml). There is little cooperativity with respect to dTTP binding (Hill coefficient = 1.1) except in the presence of ribonucleoside 5'-triphosphate, an inhibitor of dTTP hydrolysis (Hill coefficient greater than 1.5). The apparent KD for single-stranded circular DNA is 0.2 microM. The active species in dTTP hydrolysis is an oligomer of at least two subunits, as indicated by the effect of enzyme concentration upon the rate of DNA-dependent hydrolysis. The 56-kDa protein also catalyzes DNA-independent hydrolysis of dTTP with a Km of 0.11 mM and a Vmax of 1.3 x 10(-7) M/min/mg of protein (at 8 micrograms/ml). The active species in DNA-independent dTTP hydrolysis is also an oligomer.
    [Abstract] [Full Text] [Related] [New Search]