These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Autophagy regulates Endothelial-Mesenchymal transition by decreasing the phosphorylation level of Smad3.
    Author: Wang J, Feng Y, Wang Y, Xiang D, Zhang X, Yuan F.
    Journal: Biochem Biophys Res Commun; 2017 Jun 03; 487(3):740-747. PubMed ID: 28450107.
    Abstract:
    Transforming growth factor-beta2 (TGF-β2) induces Endothelial-Mesenchymal transition (EndoMT) and autophagy in a variety of cells. Previous studies have indicated that activation of autophagy might decrease TGF-β2 induced EndoMT. However, the precise role remains unclear. In the present study, we found that TGF-β2 could induce EndoMT and autophagy in human retinal microvascular endothelial cells (hRMECs). Activation of autophagy by Rapamycin or Trehalose could reduce the expression of Snail, demonstrating a role of autophagy in regulating Snail production both by transcriptional and post-transcriptional mechanism. Co-immunoprecipitation (CoIP) demonstrated that LC3 co-immunoprecipitated with Smad3 and western blot showed that autophagy inducers, Rapamycin and Trehalose, could decrease the phosphorylation level of Smad3. Therefore, our results demonstrate that autophagy counteracts the EndoMT process triggered by TGF-β2 by decreasing the phosphorylation level of Smad3.
    [Abstract] [Full Text] [Related] [New Search]